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Abstract

Extending the general undecidability result concerning the absolute-
ness of inequalities between subword histories, in this paper we show that
the question whether such inequalities hold for all words is undecidable
already over a binary alphabet and bounded number of blocks, and even
in very simple cases an answer requires an intractable computation.

1 Introduction

The notion of Parikh matrices was introduced in [3] as a generalization of Parikh
vectors in order to provide a more informative description of words. Beside the
classical multiplicity of each letter given by the Parikh vectors, the matrices also
provide information regarding the order in which some of these letters appear
in the words. A scattered subword consists of a concatenation of some of the
letters of a word, in the order they appear in it. Over the course of developing the
theory of Parikh matrices, in [4] the authors introduced the notion of subword
history, which was used in investigating relations between different scattered
subwords of a word. In the same paper, the authors settled the decidability
of equalities between subword histories with a positive answer and called for
a continuation with respect to inequalities between subword histories. Certain
easily testable cases when inequalities hold and a characterization of valid small
inequalities were given in [1]. The main question, “is it decidable whether
the value of a given subword history is non-negative in all words over a given
alphabet?” was proved undecidable in [6]. Seki proved that for a nine letter
alphabet the problem can be reduced to that of the solvability of Diophantine
equations and, thus, proved undecidable according to [5]. In this paper we
show that using once more reductions to Diophantine equations the problem
is undecidable even for a binary alphabet and even if the number of blocks is
bounded.

Considering the reader to be familiar with general Combinatorics on Words
concepts we end this section with a few definitions. For more details, see [2].
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A factor (continuous subword) z of a word w is called a block of w if z = ak,
for some a ∈ Σ, k > 0, and there are no words u, v such that w = uazv or
w = uzav. In other words blocks are maximal factors that are powers of one
letter. If w = ak1

1 a
k2
2 ...a

kn
n with ai 6= ai+1 for 1 ≤ i ≤ n − 1, we will call

red(w) = a1a2...an the reduced form of w, and pow(w) = (k1, k2, .., kn) the
power vector of w.

A word u = a1a2...am is a scattered subword of w = b1b2...bn if there is an
increasing vector of indices I = (i1, i2, .., im) such that aj = bij , 1 ≤ j ≤ m. In
this case we will call the vector I an occurrence of u in w. We say that two
occurrences I = (i1, .., im), J = (j1, .., jm) are different if they differ in at least
one position, that is ∃k : 1 ≤ k ≤ m such that ik 6= jk. By writing |w|u we
mean the number of different occurrences of u in w. For the phrase inequality
between subword histories or, in other words, subword inequality we will use
the shorthand SI in the paper.

Consider an alphabet Σ and a word w ∈ Σ∗. A subword history in Σ and
its value in w are defined recursively as follows.

• Every u ∈ Σ∗ is a subword history in Σ, referred to as monomial, and its
value in w equals |w|u.

• Assume that SH1 and SH2 are subword histories with values α1 and α2,
respectively. Then

−(SH1), (SH1) + (SH2) and (SH1)× (SH2)

are subword histories with values

−α1, α1 + α2 and α1 × α2,

respectively.

In line with previous notations, the value assumed by a subword history SH in a
word w will be denoted by |w|SH . Two subword histories are termed equivalent
if they assume the same value in any w. A subword history is linear if it is
obtained without using the operation ×. As we will investigate inequalities
between subword histories, the following result from [4] will be useful.

Theorem 1. Every subword history is equivalent to a linear subword history.
Moreover, given a subword history, an equivalent linear subword history can be
effectively constructed.

We write SH1 ≤ SH2 if, for all words w, the value of SH1 in w is at most
that of SH2 in w. Finally, we recall a result by Seki, which serves as the starting
point of our investigation. It shows that solving subword inequalities is reducible
to solving subword equalities.

Lemma 1. [6] The problem of “deciding for two subword histories SH1 and
SH2 whether there exists a word w ∈ Σ∗ such that |w|SH1

= |w|SH2
holds”

is polynomial-time Karp reducible to “for a given subword history SH, is it
decidable whether |w|SH ≥ 0 holds for every word w in Σ∗”.
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2 Undecidability for binary alphabets

Theorem 2. For a Diophantine equation of the form:

n∑
i=1

cix
ei,1
1 x

ei,2
2 · · ·xei,mm = 0

it is possible to construct a subword equation over a binary alphabet, which has
a solution if and only if the Diophantine equation does.

Proof. Let us construct a system of subword inequalities having terms

uj = an1
1 an2

2 . . . a
nj−1

j−1 aja
nj+1

j+1 . . . anm
m

where ai ∈ {a, b}, ∀i ∈ {1, .., n}, and let us define the “solution word” w as

w = an1
1 an2

2 . . . anm
m .

Clearly, |w|uj
= nj , as the words have the same number of blocks and all blocks

of uj but the jth one are equal to their counterparts in w.
Let u×nj denote the non-linear subword history we get when multiplying the

monomial uj with itself n times. For example, u×2j = uj × uj . Now, according
to the definition of subword histories, if the value of uj in w is nj , then the value

of u
×ei,j
j in w is n

ei,j
j , therefore the value assumed by

ci

(
u
×ei,1
1 × u×ei,22 × . . .× u×ei,mm

)
in the word w is exactly cin

ei,1
1 n

ei,2
2 · · ·nei,mm .

We have seen that for a Diophantine equation we can construct a subword
equation, which will have a solution if the Diophantine equation has. Conversely,
if the subword equation has a solution, i.e., there exists a word w such that

n∑
i=1

ci|w|u1
· · · |w|un

= 0

then, by assigning the values xi = |w|ui , we get a solution for the Diophantine
equation.

Corollary 1. Given a subword inequality over a binary alphabet, it is undecid-
able whether it holds for all words or not.

From Theorem 1 we know that we can construct linear subword histories
equivalent to the sides of the SI, hence in the remainder of the paper we will
deal only with inequalities where both sides consist of linear subword histories.
This will be especially significant when discussing 2-block inequalities.
By modifying the reduction from [6, Theorem 1] of solvability of Diophantine
equations to subword equations we showed that the problem in general is un-
decidable even for binary alphabets. However, note that the linearized version
of the subword equations used in the reduction to simulate their Diophantine
counterpart are complex. The question offers itself, are there some restricted
forms of inequalities which are decidable? In what follows, when we talk about
subword inequalities we use ’term’ and ’monomial’ interchangeably. Some sim-
ple cases were shown to be solvable (see [1]), namely equations where the left
side consists of one term and the right side of two.

There are various kinds of restrictions one can consider:
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1. fix the maximum number of blocks a term can have,

2. prescribe some relation between the terms, e.g. that they all have the
same reduced form, or that they have the same length, etc.,

3. require that the number of terms on one side or as a whole is bounded by
a constant (see [1]).

Another path to follow in investigating these inequalities is to consider some
proper subset of Σ∗ as the ‘solution space’, that is, for a given SI check whether
it holds for all words in some language L ⊂ Σ∗.

Here we initiate the discussion over the first case. By a k-block subword
history we mean a subword history (SH) in which every term has at most k
blocks. For example, in a 2-block SH over a binary alphabet the reduced form of
every term is one of the words a, b, ab, ba. Please recall that we are talking about
linear subword equations. Hence, to have a precise definition, we interpret the
restriction as follows: a (general, possibly non-linear) SI of the form SH1 ≤ SH2

is a k-block SI, if there exist k-block linear subword histories SH ′1 and SH ′2
such that SH1 is equivalent to SH ′1 and SH2 is equivalent to SH ′2. Losing
the linearity requirement would give us a problem which is already settled [6,
Theorems 2 and 3].

We answer the following question: “for a given k, is it decidable whether a
k-block SI holds for all words over the alphabet”. First we look at the simple
case of k = 1, which is reducible to solving univariate polynomial equations
over the natural numbers. Then for k ≥ 2 we show that the reduction from
Diophantine equations is possible even if we consider terms which have no more
blocks than the number of variables in the equations. From that, one can derive
the undecidability of inequalities with terms having at least 9 blocks and get
that even with at most two blocks per term the question is NP-hard. Note
that in this modified version of the question we did not mention the size of the
alphabet. This is because the case k = 1 is equivalent to studying unary SIs,
whereas in the other cases a binary alphabet will suffice for our reductions and
having a larger alphabet does not offer any improvements.

Over a unary alphabet, the number of occurrences of u in w is simply |w|u =(|w|
|u|
)
. This allows us to write any unary SI in the form:

m∑
i=1

cia
i ≥ 0,

where the coefficients ci are non-negative integers and m is the length of the
longest term in the SI. Since for solving a one variable Diophantine equation it
is enough to check if the solution is in the set of divisors of the free term, or
when this one does not exist, of the coefficient of the second smallest degree,
the following result follows:

Proposition 1. Given a 1-block subword inequality, it is decidable in linear
time whether it holds for all words. Moreover, if the answer is negative, a
counterexample can be found within the same time frame.

A first observation concerning the earlier reduction of Diophantine equations
to SIs is that the solution word w which we construct has as many blocks as the
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number of variables. It immediately follows that for all words u having more
blocks than w we have |w|u = 0. Therefore, these long us can be discarded if
we can show that should the subword equation have a solution, it will always
have a solution word which has as many blocks as the number of variables in
the Diophantine equation.

Lemma 2. For a Diophantine equation of the form:

n∑
i=1

cix
ei,1
1 x

ei,2
2 · · ·xei,mm = 0 (1)

it is possible to construct an m-block linear subword equation Qm = 0 over a
binary alphabet, which has solutions if and only if the Diophantine equation
does. Moreover, if (1) has a solution, there exists a word w with |red(w)| = m
such that |w|Qm

= 0.

Proof. As in Theorem 2 before, let us construct a system of subword inequalities
having terms

uj = an1
1 an2

2 . . . a
nj−1

j−1 aja
nj+1

j+1 . . . anm
m ∈ {a, b}∗

where ai 6= ai+1, ∀i ∈ 1, .., n− 1, and let us define the “solution word” w as

w = an1
1 an2

2 . . . anm
m .

Now we can provide a subword equation which has only terms with at most m
blocks, but it is not linear:

Q′ =

n∑
i=1

ci

(
u
×ei,1
1 × u×ei,22 × . . .× u×ei,mm

)
Let Q be the linear subword history equivalent to Q′. To get the linear m-block
subword equation let us take all terms from Q, that have at most m blocks, and
denote the sum of them by Qm. Furthermore, let the set of terms appearing in
it be {Qm}. Now let us get to the proof of the first part of the lemma. (IF)
We know that |w|u = 0 for all u ∈ Σ∗ such that red(u) > red(w). Clearly,
Qm assumes the same value in w as Q, because for all words u ∈ {Q} \ {Qm}
we have |w|u = 0 as |red(u)| > m = |red(w)|, hence |w|Q′ = |w|Q = |w|Qm

.
This, in turn, means that if the Diophantine equation has a solution, the value
assumed by Qm in w is 0.
(ONLY IF) To prove this direction, first we have to show that if there exists
any word w′ such that |w′|Q = 0, there exists a word w with red(w) ≤ m
for which |w|Q = 0. If red(w′) ≤ m we are done. In this case Qm = 0 is
exactly the linear m-block subword equation we were looking for. Now suppose
red(w′) > m. From the assumption |w′|Q′ = |w′|Q = 0 we get that by the
assignments xj = |w′|uj

our Diophantine equation has a solution. Similarly to
our initial construction of w let us define it as follows

w = a
|w′|u1
1 a

|w′|u2
2 . . . a

|w′|um
m ,

and consider the words vj = a
|w′|u1
1 a

|w′|u2
2 . . . a

|w′|uj−1

j−1 aja
|w′|uj+1

j+1 . . . a
|w′|um
m . Re-

iterating the previous argument

R′ =

n∑
i=1

ci

(
v
×ei,1
1 × v×ei,22 × . . .× v×ei,mm

)
= 0
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will have a solution if and only if (1) has one. Define R as the linear equivalent
of R′ and Rm as before. Then,

Rm = {u ∈ {R} | |red(u)| ≤ m},

and Rm = 0 is the subword equation with the required properties.
The last statement of the theorem follows instantly because the solution

word w was constructed so that it has exactly m blocks.

The next theorem follows directly from Lemma 2.

Theorem 3. For k ≥ 9, it is undecidable whether a given k-block subword
inequality holds for all words.

Note that this result, although not groundbreaking, brings a bit more insight
on the undecidability question of subword inequalities. In particular, we show
that the question is undecidable already for SIs with more than 8 blocks.
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